Section 2.6 (page 154)

- **1.** (a) $\frac{3}{4}$ (b) 20 **3.** (a) $-\frac{5}{8}$ (b) $\frac{3}{2}$
- **5.** (a) -8 cm/sec (b) 0 cm/sec (c) 8 cm/sec
- 7. (a) 8 cm/sec (b) 4 cm/sec (c) 2 cm/sec
- **9.** In a linear function, if x changes at a constant rate, so does y. However, unless a = 1, y does not change at the same rate as x.
- **11.** $(4x^3 + 6x)/\sqrt{x^4 + 3x^2 + 1}$
- **13.** (a) $64\pi \text{ cm}^2/\text{min}$ (b) $256\pi \text{ cm}^2/\text{min}$
- **15.** (a) Proof

(b) When
$$\theta = \frac{\pi}{6}$$
, $\frac{dA}{dt} = \frac{\sqrt{3}}{8}s^2$. When $\theta = \frac{\pi}{3}$, $\frac{dA}{dt} = \frac{1}{8}s^2$.

- (c) If s and $d\theta/dt$ are constant, dA/dt is proportional to cos θ .
- **17.** (a) $2/(9\pi)$ cm/min (b) $1/(18\pi)$ cm/min
- **19.** (a) $144 \text{ cm}^2/\text{sec}$ (b) $720 \text{ cm}^2/\text{sec}$ **21.** $8/(405\pi) \text{ ft/min}$
- **23.** (a) 12.5% (b) $\frac{1}{144}$ m/min
- **25.** (a) $-\frac{7}{12}$ ft/sec; $-\frac{3}{2}$ ft/sec; $-\frac{48}{7}$ ft/sec
 - (b) $\frac{527}{24}$ ft²/sec (c) $\frac{1}{12}$ rad/sec
- **27.** Rate of vertical change: $\frac{1}{5}$ m/sec

Rate of horizontal change: $-\sqrt{3}/15$ m/sec

- **29.** (a) -750 mi/h (b) 30 min
- **31.** $-50/\sqrt{85} \approx -5.42 \text{ ft/sec}$ **33.** (a) $\frac{25}{3} \text{ ft/sec}$ (b) $\frac{10}{3} \text{ ft/sec}$
- **35.** (a) 12 sec (b) $\frac{1}{2}\sqrt{3}$ m (c) $(\sqrt{5}\pi)/120$ m/sec

37. Evaporation rate proportional to $S \Rightarrow \frac{dV}{dt} = k(4\pi r^2)$ $V = \left(\frac{4}{3}\right)\pi r^3 \Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}. \text{ So } k = \frac{dr}{dt}.$

39. 0.6 ohm/sec **41.**
$$\frac{dv}{dt} = \frac{16r}{v} \sec^2 \theta \frac{d\theta}{dt}, \frac{d\theta}{dt} = \frac{v}{16r} \cos^2 \theta \frac{dv}{dt}$$
43. $\frac{2\sqrt{21}}{525} \approx 0.017 \text{ rad/sec}$

45. (a)
$$\frac{200\pi}{2}$$
 ft/sec (b) 200π ft/sec (c) About 427.43π ft/sec

- **45.** (a) $\frac{1}{3}$ it/sec (b) 200π it/sec (c) About 427.43 it it/sec **47.** About 84.9797 mi/h
- **49.** (a) $\frac{dy}{dt} = 3\frac{dx}{dt}$ means that y changes three times as fast as x changes. (b) y changes slowly when $x \approx 0$ or $x \approx L$. y changes more

rapidly when x is near the middle of the interval.

51. -18.432 ft/sec^2 **53.** About -97.96 m/sec